IT之家 1 月 13 日消息,中国科学技术大学郭光灿院士团队与美国、澳大利亚研究人员及本源量子共同合作,实现硅基自旋量子比特的超快操控,自旋翻转速率超过 540MHz,这是目前国际上已报道的最高值。目前该成果的相关研究论文已发表在 1 月 11 日的《自然・通信》期刊上。
论文指出,自旋轨道耦合场的方向会影响自旋比特操控速率及比特初始化与读取的保真度,运行速度和相干时间是衡量一个量子比特可行性的两个核心指标。强自旋轨道相互作用(SOI)和相对较弱的超精细相互作用使锗(Ge)中的空穴成为具有快速全电相干控制的自旋量子比特的候选体系。
科研团队在基本温度为 10 mK(绝对零度以上 0.01 度)的牛津 Triton 稀释制冷机中进行实验,通过优化器件性能,在耦合强度高度可调的双量子点中完成了自旋量子比特的泡利自旋阻塞读取,观测到了多能级的电偶极自旋共振谱。
最终,科研团队通过调节不同的自旋翻转模式,在 100 mT(毫特斯拉)的磁场下,实现了速率超过 540 MHz 的自旋量子比特的超快操控,创下了半导体系统中超快自旋量子比特控制的最高记录。
科研团队证明了在 GHW 中重洞(HHs)的强 SOI,其特点是 1.5nm 的短自旋轨道长度。该研究结果表明,锗硅空穴自旋量子比特体系是实现全电控半导体量子计算的重要候选之一,可满足 DiVincenzo 准则对可扩展量子信息处理器的要求。这一成果为半导体量子计算的研究开拓了新领域。
原文:点此。
广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。