IT之家 3 月 5 日消息,据中国科学院网站,2020 年 12 月 17 日,我国嫦娥五号探测器采集到位于风暴洋北部(43.06°N、51.92°W)的月球样品并返回地球。同位素年代学的分析结果已证明了嫦娥五号样品具有当前已知最年轻的玄武岩年龄(~ 20 亿年),且结合前期研究结果可知,嫦娥五号采样区表面月壤的形成年龄和空间暴露历史远小于 Apollo 月壤。因此,嫦娥五号样品可能保留了月壤形成与演化初期阶段单质金属铁形成机制的相关信息。
在以上思路的指引下,并结合前期陨石学研究成果,中国科学院地球化学研究所李阳研究团队开展了嫦娥五号铲取月壤粉末样品中富铁橄榄石原位微区电子学分析工作。实验结果表明,嫦娥五号月壤样品中铁橄榄石颗粒的边缘普遍具有含气孔纳米金属铁、无定形富硅组分及富镁层共存的特征(图 1),热力学计算与电子损失能量谱(EELS)分析显示纳米金属铁内部的纳米级囊泡或由 O2 和 SiO 气体形成(图 2)。
图 1.嫦娥五号月壤铁橄榄石颗粒最表层环带的成分特征,主要由含气孔纳米金属铁(v-npFe0)、富镁层(Mg-layer)及富硅组分(Si)组成 | 图源:中国科学院网站
▲ 图 2.含气孔单质金属铁的电子能量损失谱(EELS)线扫描和透射电镜能谱仪(EDS)面扫描结果 | 图源:中国科学院网站
基于上述分析结果,研究确定了月壤中铁橄榄石分解形成纳米金属铁的形成机制与相关产物。铁橄榄石表层熔融层和蒸发沉积层的缺失指示了分解反应在亚固相的条件下发生,该反应发生的热源可能来自矿物破碎过程中的摩擦作用或低速的微陨石轰击产生的局部热效应。由铁橄榄石分解在月壤颗粒表面产生的纳米金属铁通常具有中等的粒径范围(10-35 nm),该粒径的纳米金属铁对光谱的改造效应不同于蒸发沉积作用形成的极细粒纳米金属铁(~3 nm),月球表面由镁铁硅酸盐分解产生的纳米金属对月壤光谱改造的贡献需要进一步考虑。
该研究证实了月壤中单质金属铁新的成因机制,为嫦娥五号着陆区月壤形成与演化过程研究提供了参考依据,并为后续月球、小行星等返回样品分析提出了新思路。IT之家了解到,相关研究成果发表在 Geophysical Research Letters 上。
广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。