设置
  • 日夜间
    随系统
    浅色
    深色
  • 主题色

少用 ChatGPT,多支持开源,纽约大学教授 Nature 发文:为了科学界的未来

新智元 2023/5/10 12:42:03 责编:梦泽

为了科学界的未来,加入开源 LLM 阵营吧!

免费的 ChatGPT 用的是很爽,但这种闭源的语言模型最大的缺点就是不开源,外界根本无法了解背后的训练数据以及是否会泄露用户隐私等问题,也引发了后续工业界、学术界联合开源了 LLaMA 等一系列羊驼模型。

最近 Nature 世界观栏目刊登了一篇文章,纽约大学政治与数据科学教授 Arthur Spirling 呼吁大家更多地使用开源模型,实验结果可复现,也符合学术伦理。

重点是,万一哪天 OpenAI 不爽了,关闭了语言模型接口,或是靠封闭垄断涨价的话,那用户只能无奈地说一句,「终究是学术败给了资本」。

文章作者 Arthur Spirling 将于今年 7 月加入普林斯顿大学教授政治学,主要研究方向是政治方法论和立法行为,具体为文本数据 (text-as-data)、自然语言处理、贝叶斯统计、机器学习、项目反应理论和广义线性模型在政治科学中的应用。

研究人员应该避免商用模型的诱惑,共同开发透明的大型语言模型,以确保可重复性。

拥抱开源,拒绝垄断

似乎每天都有一个全新的大型语言模型 (LLM) 推出,其创建者和学术界相关人士每次都会对新模型如何与人类进行流畅交流的能力慷慨陈词,比如可以帮用户改代码,写推荐信,给文章写摘要等等。

作为一名正在使用并教授如何使用这些模型的政治和数据科学家,我认为学者们应该保持警惕,因为目前最受大众追捧的语言模型仍然是私有且封闭的,即由公司运营,他们不会披露基本模型的具体信息,只会独立地检查或验证模型的能力,所以研究人员和公众并不知道模型的训练使用了哪些文件。

急于将语言模型纳入自己的研究流程可能会出问题,可能会威胁到来之不易的「研究伦理」和「结果复现性」方面的相关进展。

不光不能依赖商用模型,研究人员还要通力合作开发透明且不依赖于某个具体公司利益的开源大型语言模型。

虽然商用模型非常方便,可以开箱即用,但投资开源语言模型是历史的趋势,既要想办法推进开发,也要让模型应用于未来的研究中。

我乐观地估计,语言模型工具的未来一定是开源的,类似于开源统计软件的发展历史,刚开始商用的统计软件很流行,但目前基本所有社区都在使用 R 或 Python 等开源平台。

举个例子,去年 7 月发布的开源语言模型 BLOOM,其开发团队 Hugging Face 是一家总部位于纽约的人工智能公司,携手一千多名志愿者和研究人员共同打造,部分研发资金由法国政府提供;其他团队也在努力开源大型语言模型。

我认为类似这样的开源项目都是伟大的,但我们还需要更多的合作,需要汇集国际资源和专业知识。

开源大型语言模型的团队通常不像大公司那样资金充足,并且开发团队还需要持续运营以跟踪领域内的最新进展:AI 领域的发展实在是太快了,甚至大部分语言模型在推出几周或几个月以后就会过时。

所以参与到开源中的学者越多,最终开源模型的效果也会更好。

使用开源 LLM 对于「可重复性的研究」至关重要,因为闭源的商用语言模型所有者可以随时更改其产品或其训练数据,都有可能会改变模型的生成结果。

比如说,一个研究小组可能会发表一篇论文,测试商用语言模型建议的措辞是否可以帮助临床医生更有效地与患者沟通;如果另一个小组试图复现这项研究,谁知道模型的基础训练数据是否和当时一样?甚至该模型是否仍然运营都是未知数。

之前研究人员常用的辅助工具 GPT-3 已经被 GPT-4 取代了,所有基于 GPT-3 接口的研究在未来很可能无法复现,对于公司来说,维持旧模型运行的优先级并不高。

相比之下,使用开源 LLM,研究人员可以查看模型的内部架构、权重,了解模型是如何运行的,定制代码并指出错误,这些细节包括模型的可调参数和训练模型的数据,社区的参与和监督都有助于让这种模式长期保持稳健。

在科学研究中使用商用语言模型也对研究伦理产生了负面的影响,因为用于训练这些模型的文本是未知的,可能包括社交媒体平台上用户之间的直接信息或儿童撰写的内容。

尽管制作公共文本的人可能已经同意了平台的服务条款,但这可能不是研究人员希望看到的知情同意标准。

在我看来,科学家应该尽可能地在自己的工作中远离使用这些模型。我们应该转向开放的语言模型,并推广给其他人使用。

此外,我认为学者,尤其是那些拥有大量社交媒体追随者的学者,不应该推动其他人使用商用模型,如果价格飙升,或者公司倒闭,研究人员可能会后悔把技术推广给同事。

研究人员目前可以求助于私人组织制作的开放式语言模型,例如用 Facebook 母公司 Meta 开源的 LLaMA,最初是基于用户申请、审核的形式发放的,但完整版模型随后在网上泄露;还可以使用 Meta 的开放语言模型 OPT-175 B

从长远来看,不利的一面是,这些模型的发布过于依赖公司的仁慈,这是一种不稳定的局面。

除此之外,还应该有与语言模型合作的学术行为准则,以及相应的监管措施,但这些都需要时间,根据我作为政治学家的经验,我预计这些规定最初肯定是很不完善的,并且见效缓慢。

与此同时,大规模的合作项目迫切需要支持,以训练用于研究的开源语言模型,类似欧洲粒子物理研究所(CERN),国际粒子物理组织,政府应通过赠款增加资金。

该领域正在以闪电般的速度发展,现在需要开始协调国内和国际支持。

科学界需要有能力评估由此得到模型的风险,并且需要谨慎地向公众发布,但很明显,开放的环境是正确的。

参考资料:

  • https://www.nature.com/articles/d41586-023-01295-4

本文来自微信公众号:新智元 (ID:AI_era)

广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。

相关文章

关键词:大模型人工智能

软媒旗下网站: IT之家 最会买 - 返利返现优惠券 iPhone之家 Win7之家 Win10之家 Win11之家

软媒旗下软件: 软媒手机APP应用 魔方 最会买 要知