设置
  • 日夜间
    随系统
    浅色
    深色
  • 主题色

70B 模型秒出 1000token,代码重写超越 GPT-4o,来自 OpenAI 投资的代码神器 Cursor 团队

量子位 2024/5/17 19:32:30 责编:清源

70B 模型,秒出 1000token,换算成字符接近 4000!

研究人员将 Llama3 进行了微调并引入加速算法,和原生版本相比,速度足足快出了快了 13 倍!

不仅是快,在代码重写任务上的表现甚至超越了 GPT-4o。

这项成果,来自爆火的 AI 编程神器 Cursor 背后团队 anysphere,OpenAI 也参与过投资。

要知道在以快著称的推理加速框架 Groq 上,70B Llama3 的推理速度也不过每秒 300 多 token。

Cursor 这样的速度,可以说是实现了近乎即时的完整代码文件编辑。

有人直呼好家伙,如果把 Cursor 魔改后的 Llama3 放到 Groq 上,是不是每秒能跑出上万 token 了。

更是有人激动地说,在大模型领域,我们正在消除“延时”这一概念。

引入全新推理加速算法

作者此次设计的加速方法,主要是用来解决一种名为“Fast Apply”的任务,即对代码内容进行快速修改并应用。

首先需要说明的是,虽然说任务最终实现的效果是代码的局部修改,但是实际操作过程中,输出并非是只有变化的内容,而是直接全局重写

这样做的原因,是团队在预先测试后做出的选择 —— 他们发现,除了 Claude-3-Opus,大多数模型在真・局部修改任务上的表现都不理想。

之所以会这样,主要有以下三个原因:

首先是直接重写时会输出更多 token,使得有更多的前向传递来确定正确的解决方案。

其次,模型的训练数据也大部分都是完整代码,对局部修改相对陌生。

此外,大模型糟糕的数学运算也无法保证能在输出差异时正确处理行号。

(不过作者认为这仍然是一个有潜力的未来研究方向。)

确定了采用全局重写的方案后,Cursor 团队使用了任务相关的数据对 Llama3 进行了微调。

所采用的数据有真实编辑数据与合成数据两大来源,按照 1:4 的比例进行了混合。

其中合成数据是指用 GPT-4 生成代码编辑的建议,然后用其他模型将这些建议“应用”到原始代码上。

为了提高数据集的质量,作者还对小文件、重复文件和无变化样本进行了下采样。

为了评估这些模型的表现,作者让它们处理了 450 个代码编辑任务(每个都不超过 400 行),并用 Claude3-Opus 对输出进行了打分。

最终,作者微调出的 70B Llama3 模型,表现几乎与 Claude3-Opus-diff 匹配,并且优于 GPT-4-Turbo 和 GPT-4o。

至此的微调解决了性能问题,但不难看出此时的 Llama3 速度依然很慢,每秒只能输出不到 300 个字符(注意是字符,不是词也不是 token)。

而让改写工作快到飞起的,还有另一项秘密武器。

针对代码改写任务,Cursor 团队专门引入了一种名为预测性编辑(speculative edits)的算法。

这种方式用一种先验算法来对多个后续 token 进行预测,然后再用本体大模型进行验证,降低了大模型的调用次数,从而减轻了运算量。

这种先验算法来自于代码任务的一个特点 —— 相比于其他文本,其词表更小,且语法结构、缩进规则等拥有更高的确定性,利用先验知识可以更精准预测未来的 token。

这样的做法也与 GPT-4 和 Meta 有着共通之处 ——

传统的语言模型推理推理速度较慢的原因,主要是预测下一个 token 的过程通常是自回归的,即模型在生成每个 token 时,都要考虑之前生成的所有 token。

为了降低运算量,以 GPT-4 为代表的大模型,使用了名为预测解码(speculative decoding)的加速算法,通过小的近似模型提前进行预测,然后再让本体大模型对预测结果进行验证。

Cursor 和 GPT-4 的区别就在于,前者的小“模型”是一种更确定的算法,而后者只是模型规模减小,本质上仍是概率预测。

Meta 这边则是推出了一次性预测多个后续 token 的算法,用 n 个独立的输出头并行预测 n 个未来 token,结果发现在编程任务上表现尤其优异,原因是由于编程语言的逻辑结构更严谨,知识的内在联系更紧密。

当然,Cursor 对这种特点利用更为充分,没有用注意力头,而是直接拿更确定的算法来做多 token 预测。

最终的结果就是,预测算法为 70B 的 Llama3 带来了近 13 倍的速度提升,而测评表现没有任何损失。

此外,作者还与企业 AI 模型基础设施平台 fireworks.ai 合作,利用其优化的推理引擎和定制化的硬件环境,进一步提高了模型的运行效率。

未来,团队还计划进行知识蒸馏,并把预测编辑算法迁移到更小的 8B Llama3,并扩展到更多的编程语言和任务。

同时,对于 Cursor 团队研究过但并未采用的真・局部修改(Diff)算法,作者也计划进行改进。

One More Thing

在实验当中,作者不仅用预测算法加速了 Llama3,也实现了对 GPT4-Turbo 的加速。

不过作者并没有介绍具体在 GPT 当中如何实现,而是留做了思考题,还搞了一场“有奖竞猜”。

能够正确解答的人将获得 1 个月的 Cursor 会员;如果能在 vllm 和 TensorRT-LLM 中实现预测加速,将分别获得半年和一年的会员。

如果你感觉有思路的话,不妨挑战试试(手动狗头)。

参考链接:

  • https://cursor.sh/blog/instant-apply#user-content-fnref-feel-difference

本文来自微信公众号:量子位 (ID:QbitAI),作者:克雷西

广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。

相关文章

关键词:人工智能

软媒旗下网站: IT之家 最会买 - 返利返现优惠券 iPhone之家 Win7之家 Win10之家 Win11之家

软媒旗下软件: 软媒手机APP应用 魔方 最会买 要知