设置
  • 日夜间
    随系统
    浅色
    深色
  • 主题色

英伟达秀 Blackwell GPU 肌肉:训练 AI 模型速度比 Hopper H100 快 2.2 倍

2024/11/14 8:33:16 来源:IT之家 作者:故渊 责编:故渊
感谢IT之家网友 华南吴彦祖 的线索投递!

IT之家 11 月 14 日消息,科技媒体 WccfTech 昨日(11 月 13 日)发布博文,报道称英伟达首次公布了 Blackwell GPU 在 MLPerf v4.1 AI 训练工作负载中的成绩,在训练 Llama 2 70B (Fine-Tuning) 模型时比 Hopper 快 2.2 倍。

测试简介

英伟达于今年 8 月,首次公布了 Blackwell GPU 在 MLPerf v4.1 AI 推理方面的基准测试成绩,而今天首次公布了该 GPU 在 MLPerf v4.1 AI 训练工作负载方面的测试成绩。

NVIDIA 表示,随着新模型的推出,AI 领域对计算的需求正在以指数级增长,因此需要大幅提升训练和推理 AI 的能力,IT之家附上本次训练工作负载主要使用的模型如下:

  • Llama 2 70B(LLM 微调)

  • Stable Diffusion(文本到图像)

  • DLRMv2(推荐系统)

  • BERT(自然语言处理)

  • RetinaNet(目标检测)

  • GPT-3 175B(LLM 预训练)

  • R-GAT(图神经网络)

这些工作负载的基准测试为评估 AI 加速器的训练性能提供了准确的数据支持。

Hopper GPU 的持续优化

Hopper GPU 自发布以来,经过持续的软件优化,性能得到了显著提升。H100 GPU 在 LLM 预训练性能上比首次提交时快了 1.3 倍,并且在 GPT-3(175B 训练)中实现了 70% 的性能提升。

英伟达利用 11616 个 H100 GPU 进行了 MLPerf 的最大规模提交,进一步证明了其在数据中心级别的强大能力。

Blackwell 的技术优势

Blackwell GPU 的设计旨在提高每个 GPU 的计算吞吐量,配备更大更快的高带宽内存,不降低性能的前提下,能够在更少的 GPU 上运行 GPT-3 175B 基准测试。

根据测试结果,64 张 Blackwell GPU 的测试性能,可以达到 256 张 Hopper GPU 的水平。

广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。

相关文章

关键词:BlackwellGPU英伟达

软媒旗下网站: IT之家 最会买 - 返利返现优惠券 iPhone之家 Win7之家 Win10之家 Win11之家

软媒旗下软件: 软媒手机APP应用 魔方 最会买 要知