设置
  • 日夜间
    随系统
    浅色
    深色
  • 主题色

阿里云通义千问发布新一代端到端多模态旗舰模型 Qwen2.5-Omni 并开源,看听说写样样精通

2025/3/27 6:39:17 来源:IT之家 作者:问舟 责编:问舟
感谢IT之家网友 _Ikaros_乌蝇哥的左手 的线索投递!

IT之家 3 月 27 日消息,今日凌晨,阿里云发布通义千问 Qwen 模型家族中新一代端到端多模态旗舰模型 ——Qwen2.5-Omni,并在 Hugging Face、ModelScope、DashScope 和 GitHub 上开源。

阿里云表示,该模型专为全方位多模态感知设计,能够无缝处理文本、图像、音频和视频等多种输入形式,并通过实时流式响应同时生成文本与自然语音合成输出。IT之家汇总其主要特点如下:

  • 全能创新架构:Qwen 团队提出了一种全新的 Thinker-Talker 架构,这是一种端到端的多模态模型,旨在支持文本 / 图像 / 音频 / 视频的跨模态理解,同时以流式方式生成文本和自然语音响应。Qwen 提出了一种新的位置编码技术,称为 TMRoPE(Time-aligned Multimodal RoPE),通过时间轴对齐实现视频与音频输入的精准同步。

  • 实时音视频交互:架构旨在支持完全实时交互,支持分块输入和即时输出。

  • 自然流畅的语音生成:在语音生成的自然性和稳定性方面超越了许多现有的流式和非流式替代方案。

  • 全模态性能优势:在同等规模的单模态模型进行基准测试时,表现出卓越的性能。Qwen2.5-Omni 在音频能力上优于类似大小的 Qwen2-Audio,并与 Qwen2.5-VL-7B 保持同等水平。

  • 卓越的端到端语音指令跟随能力:Qwen2.5-Omni 在端到端语音指令跟随方面表现出与文本输入处理相媲美的效果,在 MMLU 通用知识理解和 GSM8K 数学推理等基准测试中表现优异。

据官方介绍,Qwen2.5-Omni 采用 Thinker-Talker 双核架构。Thinker 模块如同大脑,负责处理文本、音频、视频等多模态输入,生成高层语义表征及对应文本内容;Talker 模块则类似发声器官,以流式方式接收 Thinker 实时输出的语义表征与文本,流畅合成离散语音单元。Thinker 基于 Transformer 解码器架构,融合音频 / 图像编码器进行特征提取;Talker 则采用双轨自回归 Transformer 解码器设计,在训练和推理过程中直接接收来自 Thinker 的高维表征,并共享全部历史上下文信息,形成端到端的统一模型架构。

图片

模型架构图

模型性能方面,Qwen2.5-Omni 在包括图像,音频,音视频等各种模态下的表现都优于类似大小的单模态模型以及封闭源模型,例如 Qwen2.5-VL-7B、Qwen2-Audio 和 Gemini-1.5-pro。

在多模态任务 OmniBench,Qwen2.5-Omni 达到了 SOTA 的表现。此外,在单模态任务中,Qwen2.5-Omni 在多个领域中表现优异,包括语音识别(Common Voice)、翻译(CoVoST2)、音频理解(MMAU)、图像推理(MMMU、MMStar)、视频理解(MVBench)以及语音生成(Seed-tts-eval 和主观自然听感)。

image

▲ 模型性能图
  • Qwen Chat:https://chat.qwenlm.ai

  • Hugging Face:https://huggingface.co/Qwen/Qwen2.5-Omni-7B

  • ModelScope:https://modelscope.cn/models/Qwen/Qwen2.5-Omni-7B

  • DashScope:https://help.aliyun.com/zh/model-studio/user-guide/qwen-omni

  • GitHub:https://github.com/QwenLM/Qwen2.5-Omni

  • Demo 体验:https://modelscope.cn/ studios / Qwen / Qwen2.5-Omni-Demo

广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。

相关文章

软媒旗下网站: IT之家 最会买 - 返利返现优惠券 iPhone之家 Win7之家 Win10之家 Win11之家

软媒旗下软件: 软媒手机APP应用 魔方 最会买 要知